Venturimeter

A Venturimeter is a differential-pressure flow meter that measures volumetric or mass flow rate in a pipe using a converging section, a short throat, and a diverging diffuser. It relies on continuity and Bernoulli’s equation: the fluid accelerates in the throat, pressure drops, and the pressure difference relates to the flow rate.


Geometry and Notation


Governing Equations

Continuity

\[ Q \;=\; A_1 V_1 \;=\; A_2 V_2 \quad\Rightarrow\quad V_1 \;=\; \beta^2 V_2. \]

Bernoulli Between 1 and 2 (Incompressible, No Shaft Work)

\[ \frac{p_1}{\rho_f g} + \frac{V_1^2}{2g} + z_1 \;=\; \frac{p_2}{\rho_f g} + \frac{V_2^2}{2g} + z_2 + h_L, \] where \(h_L\) is the head loss between taps (small for a well-designed Venturi). For a horizontal installation \((z_1 = z_2)\) and neglecting \(h_L\) (ideal), \[ \frac{p_1 - p_2}{\rho_f g} \;=\; \frac{V_2^2 - V_1^2}{2g} \;=\; \frac{V_2^2}{2g}\,(1 - \beta^4). \] Define the differential head in the flowing fluid: \[ h \;\equiv\; \frac{p_1 - p_2}{\rho_f g}. \] Then \[ V_2 \;=\; \sqrt{\frac{2 g\, h}{1 - \beta^4}} \quad\Rightarrow\quad Q_{\text{ideal}} \;=\; A_2 \sqrt{\frac{2 g\, h}{1 - \beta^4}}. \]

Real Flow: Discharge Coefficient

Accounting for viscous effects and non-idealities via \(C_d\) (typically \(0.97\!-\!0.99\) for Venturis), \[ Q \;=\; C_d\, A_2 \sqrt{\frac{2 g\, h}{1 - \beta^4}}. \]

Manometer Relationships

Differential Manometer with a Different Fluid

If a U-tube manometer uses a fluid of density \(\rho_m\) different from the line fluid (\(\rho_f\)), the manometer reading \(h_m\) (height difference) corresponds to \[ \Delta p \;=\; p_1 - p_2 \;=\; g\, h_m \,(\rho_m - \rho_f). \] Hence the equivalent head in the flowing fluid: \[ h \;=\; \frac{\Delta p}{\rho_f g} \;=\; h_m\!\left(\frac{\rho_m}{\rho_f} - 1\right). \] Combine with the discharge equation: \[ Q \;=\; C_d\, A_2 \sqrt{\frac{2 g\, h_m\!\left(\frac{\rho_m}{\rho_f} - 1\right)}{1 - \beta^4}}. \]

Manometer Filled with the Same Fluid

If \(\rho_m = \rho_f\) (e.g., piezometric taps connected to a gauge filled with the same liquid), then \[ \Delta p \;=\; \rho_f g\, h_m \quad\Rightarrow\quad h \;=\; h_m. \]

Elevation Difference Between Taps

For non-horizontal installations, include elevation: \[ \frac{p_1 - p_2}{\rho_f g} \;=\; h \;=\; h_{\text{read}} + (z_2 - z_1), \] where \(h_{\text{read}}\) is the manometer head referenced to the same datum. Many setups are designed so taps are at the same elevation.

Head Loss and Energy Considerations


Design and Installation Notes


Worked Example (Water, Mercury Manometer)

Water at \(20^\circ\text{C}\) \((\rho_f \approx 1000\ \text{kg/m}^3)\) flows through a Venturi with \(d_1 = 0.10\ \text{m}\), \(d_2 = 0.050\ \text{m}\) (\(\beta = 0.5\)). A U-tube manometer filled with mercury \((\rho_m \approx 13{,}600\ \text{kg/m}^3)\) reads \(h_m = 0.25\ \text{m}\). Take \(C_d = 0.98\), \(g = 9.81\ \text{m/s}^2\). Find \(Q\).

Equivalent head in water:

\[ h \;=\; h_m\!\left(\frac{\rho_m}{\rho_f} - 1\right) \;=\; 0.25\,(13.6 - 1) \;=\; 3.15\ \text{m}. \]

Throat area:

\[ A_2 \;=\; \frac{\pi d_2^2}{4} \;=\; \frac{\pi (0.05)^2}{4} \;=\; 1.9635\times 10^{-3}\ \text{m}^2. \]

Denominator factor:

\[ 1 - \beta^4 \;=\; 1 - 0.5^4 \;=\; 0.9375. \]

Flow rate:

\[ Q \;=\; 0.98 \times 1.9635\times 10^{-3} \times \sqrt{\frac{2\times 9.81 \times 3.15}{0.9375}} \;\approx\; 1.56\times 10^{-2}\ \text{m}^3/\text{s} \;\approx\; 15.6\ \text{L/s}. \]

Common Pitfalls


Quick Venturi Calculator

Enter pipe/throat diameters, manometer reading, densities, and \(C_d\). Assumes horizontal taps. For non-horizontal taps, adjust \(h\) accordingly.

Results



  

  

Key Formulas Summary