Air Refrigeration Cycles: Reversed Brayton and Aircraft Air-Cycle Systems

A calculation-ready guide to air refrigeration: the ideal reversed Brayton (Bell–Coleman) cycle, real component effects, aircraft configurations (simple, bootstrap, regenerative), heat-exchanger modeling, COP equations, sizing for load, and worked examples. Math is rendered via MathJax.

Symbols and assumptions

Thermophysical

  • Ideal-gas air: \(R = 287\,\text{J/(kg\cdot K)}\), \(k = \gamma = c_p/c_v\) (use \(k \approx 1.4\) if constant)
  • Heat capacities: \(c_p \approx 1.004\,\text{kJ/(kg\cdot K)}\) (moderate variation with \(T\))
  • Pressure ratio: \(r_p = \dfrac{p_2}{p_1}\)

States and processes

  • State 1: Low-pressure air entering compressor (from cooled space)
  • State 2: Compressor discharge
  • State 3: After cooler/heat exchanger (rejecting heat to ambient/ram air)
  • State 4: Turbine discharge supplying refrigeration; \(4 \rightarrow 1\) absorbs heat from space

Efficiencies

  • Compressor isentropic: \[ \eta_c = \frac{T_{2s} - T_1}{T_2 - T_1} \]
  • Turbine isentropic: \[ \eta_t = \frac{T_3 - T_4}{T_3 - T_{4s}} \]
  • Heat-exchanger effectiveness: \[ \varepsilon = \frac{T_{\text{hot,in}} - T_{\text{hot,out}}}{T_{\text{hot,in}} - T_{\text{cold,in}}} \]

Ideal reversed Brayton (Bell–Coleman) cycle

Isentropic relations (ideal gas, constant k)

Heat and work per unit mass

Real effects and component efficiencies

Merit parameters

Worked example: simple air-cycle with real components

Given

Step 1: Compressor outlet temperature

Isentropic rise: \[ T_{2s} = T_1\,r_p^{\frac{k-1}{k}} = 285 \cdot 3^{0.2857} \approx 285 \cdot 1.369 \approx 390.2\,\text{K} \] Actual: \[ T_2 = T_1 + \frac{T_{2s} - T_1}{\eta_c} = 285 + \frac{105.2}{0.82} \approx 413.3\,\text{K} \]

Step 2: Cooler outlet temperature

\[ T_3 = T_2 - \varepsilon_c\,(T_2 - T_{amb}) = 413.3 - 0.75\,(413.3 - 300) \approx 328.3\,\text{K} \]

Step 3: Turbine outlet temperature

Isentropic drop: \[ T_{4s} = T_3\,r_p^{-\frac{k-1}{k}} = 328.3 \cdot 3^{-0.2857} \approx 328.3 \cdot 0.731 \approx 239.9\,\text{K} \] Actual: \[ T_4 = T_3 - \eta_t\,(T_3 - T_{4s}) = 328.3 - 0.86\,(88.4) \approx 252.4\,\text{K} \] Target \(260\,\text{K}\) is met with margin.

Step 4: Performance and sizing

Specific refrigeration: \[ q_L = c_p\,(T_1 - T_4) \approx 1.004\,(285 - 252.4) \approx 32.7\,\text{kJ/kg} \] Specific works: \[ w_c = c_p\,(T_2 - T_1) \approx 1.004\,(128.3) \approx 128.8\,\text{kJ/kg},\quad w_t = c_p\,(T_3 - T_4) \approx 1.004\,(75.9) \approx 76.2\,\text{kJ/kg} \] Net: \[ w_{net} \approx 52.6\,\text{kJ/kg},\quad \text{COP}_R = \frac{32.7}{52.6} \approx 0.62 \] For \(\dot{Q}_L = 20\,\text{kW}\), \[ \dot{m} = \frac{20}{32.7} \approx 0.612\,\text{kg/s},\quad \dot{W}_{sha} \approx \dot{m}\,w_{net} \approx 0.612 \cdot 52.6 \approx 32.2\,\text{kW} \]

Improving \(\varepsilon_c\) or adding a second cooler (bootstrap) can lower \(T_3\) and boost COP notably; raising \(r_p\) further would reduce \(T_4\) but increase \(w_c\), often reducing COP beyond an optimum.

Design checks and quick formulas

Quick relations