Newton’s Law of Cooling

Newton’s law of cooling models the transient temperature of a body exchanging heat with a surrounding fluid by convection. When internal temperature gradients inside the body are negligible (the lumped-capacitance assumption), the body’s temperature decays (or rises) exponentially toward the ambient.

Statement and Governing Equation

The convective heat transfer rate is proportional to the instantaneous temperature difference between a surface and the surrounding fluid:

\[ \dot{Q}_{\text{conv}} = h\,A\,(T_s - T_\infty) \]

For a lumped body where the internal temperature is spatially uniform and equal to \(T(t)\), an energy balance gives:

\[ m\,c\,\frac{dT}{dt} = -\,h\,A\,\big(T - T_\infty\big) \quad\Longrightarrow\quad \frac{dT}{dt} = -\frac{1}{\tau}\,\big(T - T_\infty\big) \]

with the thermal time constant

\[ \tau = \frac{m\,c}{h\,A} = \frac{\rho\,c\,V}{h\,A} \]

Solution Forms

Constant Ambient Temperature

For constant \(T_\infty\) and initial condition \(T(0)=T_0\):

\[ T(t) = T_\infty + \big(T_0 - T_\infty\big)\,e^{-t/\tau} \]

Time-Varying Ambient Temperature

If \(T_\infty = T_\infty(t)\) varies in time, the ODE is linear and solved via an integrating factor:

\[ \frac{dT}{dt} + \frac{1}{\tau}\,T = \frac{1}{\tau}\,T_\infty(t) \quad\Rightarrow\quad T(t) = e^{-t/\tau}\,T_0 + \frac{1}{\tau}\,e^{-t/\tau}\!\int_{0}^{t} e^{s/\tau}\,T_\infty(s)\,ds \]

With Constant Internal Heat Generation

If the body generates heat uniformly at rate \(\dot{Q}_{\text{gen}}\) (W):

\[ m\,c\,\frac{dT}{dt} = -hA\,(T - T_\infty) + \dot{Q}_{\text{gen}} \quad\Rightarrow\quad T(t) = T_\infty + \Delta T_{\text{ss}} + \big(T_0 - T_\infty - \Delta T_{\text{ss}}\big)e^{-t/\tau} \]

where the steady temperature rise is

\[ \Delta T_{\text{ss}} = \frac{\dot{Q}_{\text{gen}}}{hA} \]

Validity: Lumped-Capacitance Criterion

Newton’s law (exponential model) requires negligible internal temperature gradients. The standard check uses the Biot number:

\[ \mathrm{Bi} = \frac{h\,L_c}{k} \;\lesssim\; 0.1 \quad\text{with}\quad L_c = \frac{V}{A} \]

Including Radiation and Other Effects

Combined Convection and Radiation

Radiation can be linearized about a mean temperature \(T_m\) to define an effective radiative coefficient:

\[ h_{\text{rad}} \approx 4\,\varepsilon\,\sigma\,T_m^{3} \quad\Rightarrow\quad h_{\text{tot}} \approx h_{\text{conv}} + h_{\text{rad}},\quad \tau \approx \frac{m c}{A\,h_{\text{tot}}} \]

Time-Dependent Coefficients

If \(h\), \(A\), or \(c\) vary with time, the ODE becomes

\[ \frac{dT}{dt} + \frac{h(t)A(t)}{m(t)c(t)}\big(T - T_\infty(t)\big) = 0 \]

The formal solution is

\[ T(t) = e^{-\int_0^t \frac{ds}{\tau(s)}}\,T_0 + e^{-\int_0^t \frac{ds}{\tau(s)}} \int_{0}^{t} \frac{T_\infty(u)}{\tau(u)}\,e^{\int_0^u \frac{ds}{\tau(s)}}\,du \quad\text{where}\quad \tau(t)=\frac{m(t)c(t)}{h(t)A(t)} \]

Estimating h from Cooling Curves

Rearranging the constant-ambient solution:

\[ \ln\!\big(T(t)-T_\infty\big) = \ln\!\big(T_0 - T_\infty\big) - \frac{t}{\tau} \quad\Rightarrow\quad \text{slope} = -\frac{1}{\tau} = -\frac{hA}{m c} \]

Worked Examples

Example 1 — Aluminum Sphere Cooling in Air (Lumped)

Example 2 — Adding Radiation to Air Cooling

Example 3 — Internal Generation in a Small Device

Example 4 — Estimating h from Data

Practical Guidance

Quick Reference